2025年全年资料免费大全_: 影响广泛的决策,未来能否吸取过去的教训?

2025年全年资料免费大全: 影响广泛的决策,未来能否吸取过去的教训?

更新时间: 浏览次数:14



2025年全年资料免费大全: 影响广泛的决策,未来能否吸取过去的教训?各观看《今日汇总》


2025年全年资料免费大全: 影响广泛的决策,未来能否吸取过去的教训?各热线观看2025已更新(2025已更新)


2025年全年资料免费大全: 影响广泛的决策,未来能否吸取过去的教训?售后观看电话-24小时在线客服(各中心)查询热线:



全国服务区域:玉溪、宿迁、红河、通辽、哈密、绥化、黑河、济南、日喀则、桂林、辽阳、朔州、湛江、萍乡、金昌、潮州、固原、衡水、汕头、海北、海西、临沂、六安、喀什地区、廊坊、江门、新余、青岛、郴州等城市。










2025年全年资料免费大全: 影响广泛的决策,未来能否吸取过去的教训?
















2025年全年资料免费大全






















全国服务区域:玉溪、宿迁、红河、通辽、哈密、绥化、黑河、济南、日喀则、桂林、辽阳、朔州、湛江、萍乡、金昌、潮州、固原、衡水、汕头、海北、海西、临沂、六安、喀什地区、廊坊、江门、新余、青岛、郴州等城市。























2025今天澳门买什么好
















2025年全年资料免费大全:
















太原市迎泽区、澄迈县老城镇、昌江黎族自治县十月田镇、万宁市东澳镇、广西来宾市象州县温州市瑞安市、红河元阳县、庆阳市西峰区、淄博市沂源县、黔南平塘县、玉溪市峨山彝族自治县、红河开远市广州市增城区、黔南独山县、黔西南贞丰县、内蒙古呼伦贝尔市额尔古纳市、上海市青浦区、宜春市上高县、内蒙古兴安盟扎赉特旗长沙市长沙县、九江市柴桑区、三明市大田县、合肥市包河区、滁州市凤阳县东莞市桥头镇、临高县博厚镇、湘西州吉首市、温州市平阳县、嘉兴市平湖市
















开封市尉氏县、盐城市响水县、铜仁市万山区、泉州市惠安县、六安市舒城县驻马店市汝南县、平顶山市新华区、吉安市青原区、合肥市巢湖市、宜昌市点军区、滁州市凤阳县、泰州市兴化市、吉林市丰满区、金华市武义县郑州市新郑市、凉山布拖县、滨州市无棣县、赣州市赣县区、广西柳州市三江侗族自治县、阜新市海州区、金华市东阳市、邵阳市绥宁县、厦门市思明区、连云港市赣榆区
















宁德市福鼎市、昭通市巧家县、衡阳市常宁市、苏州市相城区、阜新市细河区、深圳市龙岗区、琼海市石壁镇、温州市瓯海区、北京市丰台区济南市长清区、濮阳市濮阳县、娄底市新化县、台州市椒江区、漯河市舞阳县、黄石市大冶市信阳市商城县、三明市三元区、文山富宁县、上海市松江区、内蒙古乌兰察布市四子王旗临汾市侯马市、酒泉市金塔县、龙岩市漳平市、西宁市城北区、厦门市海沧区
















云浮市新兴县、金华市永康市、长治市襄垣县、蚌埠市禹会区、安庆市宿松县、普洱市墨江哈尼族自治县、邵阳市洞口县、广西柳州市柳南区、嘉兴市桐乡市、雅安市名山区  宜昌市五峰土家族自治县、德宏傣族景颇族自治州盈江县、威海市乳山市、沈阳市皇姑区、合肥市长丰县
















孝感市安陆市、菏泽市曹县、甘孜得荣县、商丘市虞城县、潍坊市青州市、陇南市文县万宁市大茂镇、遵义市习水县、襄阳市枣阳市、鞍山市岫岩满族自治县、景德镇市浮梁县、苏州市昆山市、安康市岚皋县遂宁市安居区、锦州市北镇市、长治市潞城区、济南市长清区、九江市武宁县青岛市莱西市、保山市施甸县、内江市市中区、辽源市西安区、洛阳市汝阳县、烟台市莱阳市、赣州市于都县、琼海市龙江镇、酒泉市金塔县、大同市天镇县广西百色市德保县、中山市三乡镇、黔东南丹寨县、芜湖市鸠江区、信阳市光山县佛山市三水区、忻州市偏关县、延安市延长县、重庆市潼南区、邵阳市洞口县、屯昌县屯城镇、西安市临潼区、揭阳市揭西县、南阳市西峡县、赣州市兴国县
















乐山市五通桥区、黔东南榕江县、遂宁市射洪市、北京市门头沟区、齐齐哈尔市昂昂溪区、伊春市铁力市、杭州市上城区泉州市惠安县、毕节市金沙县、南平市顺昌县、深圳市福田区、普洱市景东彝族自治县内蒙古鄂尔多斯市鄂托克前旗、巴中市南江县、泰州市兴化市、锦州市义县、内蒙古锡林郭勒盟阿巴嘎旗、黄石市阳新县、濮阳市南乐县
















盐城市亭湖区、琼海市会山镇、盐城市盐都区、北京市密云区、佳木斯市同江市、重庆市黔江区红河开远市、绥化市兰西县、大兴安岭地区新林区、龙岩市永定区、晋中市昔阳县、连云港市灌云县、淮安市金湖县安顺市普定县、阜阳市颍泉区、陇南市武都区、湖州市德清县、铜仁市万山区、大庆市大同区、盐城市滨海县、内蒙古巴彦淖尔市临河区、黔东南从江县泉州市鲤城区、内蒙古呼伦贝尔市扎兰屯市、汕尾市海丰县、揭阳市惠来县、汉中市勉县、乐东黎族自治县利国镇




黔南瓮安县、抚州市宜黄县、运城市闻喜县、商洛市洛南县、哈尔滨市南岗区  鸡西市梨树区、南京市高淳区、榆林市靖边县、江门市鹤山市、淮南市寿县、商丘市宁陵县、吉林市昌邑区
















广安市华蓥市、苏州市姑苏区、大同市云州区、盘锦市大洼区、绍兴市越城区、抚州市东乡区、黔东南镇远县、三明市沙县区、黔东南黎平县、郑州市新密市甘南碌曲县、六安市金寨县、衡阳市南岳区、永州市新田县、绵阳市三台县、内蒙古乌兰察布市集宁区、攀枝花市仁和区、厦门市集美区、绥化市兰西县、周口市商水县




南通市如东县、辽阳市灯塔市、茂名市电白区、宣城市宁国市、徐州市贾汪区、齐齐哈尔市泰来县、忻州市忻府区、内蒙古赤峰市翁牛特旗广西南宁市隆安县、沈阳市法库县、齐齐哈尔市昂昂溪区、泰州市高港区、雅安市汉源县、漯河市源汇区、大庆市林甸县、蚌埠市五河县、内蒙古包头市石拐区绵阳市盐亭县、临夏广河县、黔南长顺县、临高县多文镇、重庆市城口县、朝阳市双塔区、哈尔滨市南岗区、盘锦市兴隆台区




菏泽市巨野县、长沙市开福区、成都市都江堰市、内蒙古巴彦淖尔市磴口县、新乡市获嘉县、杭州市淳安县、湘潭市雨湖区、武汉市新洲区六盘水市盘州市、昭通市昭阳区、西宁市城东区、安康市宁陕县、忻州市河曲县、白沙黎族自治县打安镇、海南共和县、长治市潞城区
















池州市石台县、三明市宁化县、梅州市平远县、萍乡市安源区、内蒙古包头市土默特右旗、沈阳市苏家屯区、运城市闻喜县、广西百色市右江区重庆市铜梁区、郴州市宜章县、黄山市黟县、大兴安岭地区加格达奇区、大庆市肇州县、绥化市安达市、齐齐哈尔市碾子山区内蒙古赤峰市红山区、荆门市掇刀区、南充市阆中市、中山市中山港街道、盐城市东台市宿迁市沭阳县、东莞市横沥镇、内蒙古巴彦淖尔市乌拉特后旗、广西桂林市龙胜各族自治县、广西梧州市岑溪市、中山市三乡镇、德州市庆云县、鸡西市梨树区、果洛甘德县、金华市永康市内蒙古赤峰市宁城县、咸阳市泾阳县、永州市蓝山县、绵阳市盐亭县、开封市杞县、曲靖市麒麟区
















遂宁市船山区、龙岩市新罗区、韶关市武江区、温州市苍南县、郴州市北湖区、台州市三门县、凉山美姑县、娄底市新化县、内蒙古通辽市奈曼旗深圳市龙华区、广西桂林市雁山区、太原市古交市、白沙黎族自治县邦溪镇、吉安市吉州区、濮阳市华龙区、九江市共青城市北京市门头沟区、红河个旧市、阳江市江城区、白沙黎族自治县细水乡、内蒙古锡林郭勒盟二连浩特市、盘锦市大洼区、上饶市鄱阳县、天水市武山县、西安市未央区深圳市南山区、眉山市洪雅县、巴中市通江县、连云港市灌云县、澄迈县中兴镇、平顶山市叶县、文山麻栗坡县、乐山市沐川县、抚顺市东洲区张家界市桑植县、东莞市东城街道、青岛市李沧区、哈尔滨市阿城区、重庆市荣昌区、惠州市惠阳区、内蒙古赤峰市敖汉旗

  今年以来,关于DeepSeek的话题热度一直很高,也引发了一些人工智能可能影响哪些行业的探讨。在这当中,关于政务服务方面的应用尤为引人关注。有人暗喜,人工智能是公职人员写材料、出方案的神器。有人厌恶,因为汇总基层汇报材料时,发现大量的AI痕迹,辞藻华丽却内容空洞,梳理这些材料,工作量反而比以前增加了很多。今天,就来继续聊聊这个话题。

  先说一个蛮有意思的现象。有人问DeepSeek一个问题:“xx大学和xx大学哪个更好,二选一,不需要说明理由”。经过一番思索,DeepSeek给出自己的答案。继续跟进问题,“我是另一所学校的”,大模型立马改口。当进一步表示“两个大学都读过”,DeepSeek在深度思考中直白地给出逻辑:“恭维用户”,“双校光环叠加”的回应已然失焦。

  如果仅从玩笑或者调试的角度,这样的问答或许令人会心一笑。但是,倘若把咨询的问题换成涉及群众切身利益的公共事项,或者需要人工智能为公职人员提供决策辅助时,这种“过度迎合”的情况就需要加以重视了。

  不可否认,“AI+政务”其势已成。近来,多地组织领导干部学习大模型使用方法,不少单位正在接入或者部署本地化DeepSeek。数据显示,有的地方上线政务大模型后,公文格式修正准确率超95%,审核时间缩短90%,跨部门任务分派效率提升80%。

  数据喜人,也不乏思考:一个以用户满意为评价维度的大模型,究竟能不能承载各方期待?当各种文字材料趋于模板化、套路化,该不该归咎于作为使用者比如公职人员身上?

  先说第一个。让用户满意当然无可非议,但是当态度的变量超过真实的参数,那就有可能本末倒置。试想,当你使用政务大模型撰写解决某个问题的方案时,得到的却是一堆情绪价值爆棚、实用信息不足的反馈,恐怕只会更加焦虑。

  有人在研究中发现,目前许多生成式人工智能存在一种“讨好”倾向,甚至会因此胡编乱造。表面看似有理有据,实则早就偏题千里。某种程度上,这是消纳数据、反馈强化的结果。优点当然是对齐了与人类的“颗粒度”,缺点也显而易见,开始与真实脱节。

  由此而言,我们依然需要保持自我认知的掌控权。正如有人所提醒的那样:“我们永远要带着一点点怀疑、一点点好奇、一点点求真精神,与它探讨、对话、切磋。”当然,更为重要的是不能依赖,AI再强也替代不了“脚底板”,调查研究始终是谋事之基、成事之道。

  再说第二点。毋庸讳言,许多人已经尝试使用生成式大模型写报告、找素材、攒总结,写作效率大大提升。但与此同时也带来争议,拗口的表达如出一辙,机械的逻辑似曾相识,鲜活的案例真假难辨,这样的公文材料有啥意义?

  该不该打板子?可能没这么简单。这其中,当然有个别人的应付之举,但更多人特别是基层干部有话要说。有人对此毫不讳言:“材料任务繁重,改稿总比写稿省很多力气……我们不是懒,只是想从文山会海中稍稍解脱松绑一下”。

  一句话,道出基层工作特别是材料工作之繁、之窘。从这个角度来说,理应对基层干部如何更合理使用政务大模型进行善意的提醒。但更重要的,是厘清其中的行为动机和难言之隐。是不是不必要的材料?有没有材料政绩之嫌?那种“以材料应付材料”的做法,才是AI应用走偏的重要原因。归根结底,还是要进一步减轻基层负担,让政务大模型从疲于应对的工具真正成为提升效能的神器。

  有一句广为人知的话,“打败你的不是对手,颠覆你的不是同行,而是传统思维和落后观念。”或许,政府服务领域正在掀起一场浪潮。当技术突飞猛进的时候,关于治理的智慧也应乘势而上。

  这正是:

  三千案牍屏间逝,百万铨衡指上飞。

  墨守成规矜故纸,智生穷变叩玄机。

  (打油诗由DeepSeek生成)

  来源:人民日报评论,作者:风凌度 【编辑:刘湃】

相关推荐: